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ABSTRACT

Matrix Gla protein (MGP) belongs to the family of vitamin K–dependent, Gla-containing proteins and in
higher vertebrates, is found in the extracellular matrix of mineralized tissues and soft tissues. MGP synthesis
is highly regulated at the transcription and posttranscription levels and is now known to be involved in the
regulation of extracellular matrix calcification and maintenance of cartilage and soft tissue integrity during
growth and development. However, its mode of action at the molecular level remains unknown. Because there
is a large degree of conservation between amino acid sequences of shark and human MGP, the function of
MGP probably has been conserved throughout evolution. Given the complexity of the mammalian system, the
study of MGP in a lower vertebrate might be advantageous to relate the onset of MGP expression with specific
events during development. Toward this goal, MGP was purified fromXenopuslong bones and its N-terminal
amino acid sequence was determined and used to clone theXenopusMGP complementary DNA (cDNA) by
a mixture of reverse-transcription (RT)– and 5*- rapid amplification of cDNA ends (RACE)–polymerase chain
reaction (PCR). MGP messenger RNA (mRNA) was present in all tissues analyzed although predominantly
expressed inXenopusbone and heart and its presence was detected early in development at the onset of
chondrocranium development and long before the appearance of the first calcified structures and metamor-
phosis. These results show that in this system, as in mammals, MGP may be required to delay or prevent
mineralization of cartilage and soft tissues during the early stages of development and indicate thatXenopus
is an adequate model organism to further study MGP function during growth and development. (J Bone
Miner Res 2001;16:1611–1621)
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INTRODUCTION

MATRIX GLA protein (MGP) is a small protein (10 kDa
molecular weight) that contains five residues of the

vitamin K–dependent calcium binding amino acid
g-carboxyglutamic acid (Gla). In mammals, the transcrip-

tion of the MGP gene occurs in all tissues analyzed(1–3) and
it is expressed at comparable levels in fetal and adult tis-
sue,(4) suggesting that it may play a role during vertebrate
development.

The expression of the MGP gene has been shown to be
affected by steroid hormones such as retinoic acid(2,5,6) and
the hormonally active form of vitamin D3, 1,25-
dihydroxyvitamin D3,

(2,7) as well as by growth factors and
by cell proliferation.(8,9) MGP is also subject to complex
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post-translational modifications(10,11) suggesting that its
synthesis follows a strictly regulated pathway. Although
several preliminary works hinted at the possible function of
MGP as a calcification inhibitor,(3,12) its function has re-
mained unclear until recent gene deletion experiments(13)

showed that homozygous mice lacking the MGP gene begin
to die 2–3 weeks after birth from calcification of major
arteries, which lead to their rupture and exsanguination.
Furthermore, mutations in the MGP gene recently have been
linked to the human Keutel syndrome,(14) an autosomal
recessive disorder characterized by the presence of abnor-
mal cartilage calcifications, midfacial hypoplasia, and pul-
monary stenosis. Taken together, these results have shown
clearly that “in vivo,” MGP plays an important role in the
regulation of extracellular matrix calcification and is re-
quired for maintenance of cartilage and soft tissue integrity
during normal growth and development.

The publication of the sequence for the shark MGP pro-
tein(15) has shown that there is a large degree of conserva-
tion in those residues considered to be important for the
protein function. MGP’s posttranslational modifications,
such as N- and C-terminal cleavage sites and sites of serine
phosphorylation andg-carboxylation,(11,15) also have been
maintained. In addition, MGP also shares significant se-
quence homology with osteocalcin (or bone Gla protein
[BGP]), another vitamin K–dependent Gla-containing pro-
tein from the extracellular matrix of bone.(16) Taken to-
gether, these results suggest that the function of the protein
has remained unaltered despite more than 400 million years
of evolution. Given the complexity of the mammalian sys-
tem, the use of a lower vertebrate as a model system can be
advantageous in attempts to relate specific pathways of
growth and development with the onset of MGP expression.
Features such as high number of progeny and large egg size,
external development, and ease in handling both eggs and
embryos, together with the fact that it is already an estab-
lished model for early vertebrate development, makesXe-
nopusa suitable organism to further study the function of
MGP.

In this report, we describe the purification of the MGP
protein fromXenopus laevis, the cloning of its complemen-
tary DNA (cDNA) and pattern of tissue distribution, and the
expression of MGP during development before metamor-
phosis and calcification of the skeleton. Considerations on
the evolutionary pathway of MGP from fish to man and its
relationship with BGP are discussed also.

MATERIALS AND METHODS

Purification of MGP fromX. laevisbone

Adult Xenopusvertebra and long bones were freed from
adhering soft tissues and bone marrow, extensively washed
in water and acetone, dried, and then powdered using a
blender. Bone powder was washed in 6 M guanidine to
remove the organic matrix, washed again in water and
acetone, air-dried, and kept frozen until used. Extraction
was performed from the mineralized bone matrix using a
modification of previously described procedures.(15) Briefly,
bones were demineralized at 4°C for 4 h with 10% formic

acid at a volume to weight ratio of 1 ml acid/10 g of bone.
The extracted proteins were dialyzed against water using a
3500-molecular weight cut-off tubing (Spectra/Por; Spec-
trum Labs, Gardena CA, USA) to precipitate MGP. The
precipitated fraction of proteins was collected by centrifu-
gation, resuspended in 6 M guanidine hydrochloride, 0.1 M
Tris, pH 9.0, and fractionated by molecular weight over a
Sephacryl S-100 HR column (0.9 cm3 150 cm) equili-
brated in the same buffer. Fractions of approximately 1.7 ml
each were collected and protein content was estimated by
spectrophotometer readings at 280 nm and 220 nm. Because
incomplete separation was achieved, fractions (24–35) ex-
pected to contain MGP were pooled and dialyzed against 50
mM HCl as described previously. The entire content of the
dialysis bag was then collected, lyophilized, resuspended in
6 M guanidine hydrochloride, 0.1 M Tris, pH 9.0, and
refractionated by molecular weight over a second Sephacryl
S-100 HR column (2.0 cm3 150 cm). Fractions of approx-
imately 4.0 ml were collected and protein content was
determined as described previously. Fractions 58 and 59
(Fig. 1), thought to contain MGP, were pooled and further
analyzed by sodium dodecyl sulfate–poly acrylamide gel
electrophoresis (SDS-PAGE).

N-terminal protein sequence analysis

The Sephacryl S-100 HR fractions containing purified
XenopusMGP (xMGP) were dialyzed against 50 mM HCl
and protein content was estimated by absorbance at 280 nm.
Two small aliquots corresponding to 5mg and 15mg of total
protein (on the assumption that one A280 U equals 1 mg of
protein), were freeze-dried, dissolved, and electrophoresed
on an 18% SDS/PAGE gel. A major band was present in
each case at the expected molecular weight for MGP and no
other bands were detected. Therefore, an aliquot of the
dialyzed material was adsorbed onto a polyvinylidene di-
fluoride (PVDF) membrane using a ProSpin device (Ap-
plied Biosystems Division of Perkin Elmer, Foster City,
CA, USA) and then subjected to N-terminal protein se-
quencing using an Applied Biosystems Model 494 sequena-
tor equipped with an on-line high-performance liquid chro-
matography (HPLC) for phenylthiohydantoin (PTH)-amino
acid detection.

Detection of the phosphorylated serine residues

An aliquot of the MGP peak fraction from the S100 gel
filtration column, corresponding to 2 nmol of protein, was
adsorbed onto a PVDF membrane using a ProSpin device
and rinsed with 20% methanol to remove salts or contam-
inants. Phosphoserine residues were identified by protein
sequence analysis after being converted toS-ethylcysteine
by reaction with ethanethiol, as described elsewhere.(11,17)

The PVDF membrane was placed in a 1.5-ml screw-cap
polypropylene tube along with 100ml of derivatization
reagent (stock solution: 80ml ethanol, 65ml 5 M NaOH, 60
ml ethanethiol, and 400ml water) and then flushed with
nitrogen and capped. The reaction was allowed to proceed
for 2 h at60°C. Before the start of the sequencer program,
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the PVDF membrane was dried for 30 minutes with argon to
remove the ethanethiol reagent.(11)

Nucleotide sequence of xMGP cDNA

The N-terminal amino acid sequence of the xMGP pro-
tein (26 residues) obtained by protein sequencing was used
to construct a forward oligonucleotide primer spanning
from residue 1–8 of the mature protein. Total RNA was
isolated fromXenopuslong bones following an established
method,(18) reverse-transcribed (RT) using an oligo-d(T)
adapter (59-acgcgtcgacctcgagatcgatg(t)18-39), and amplified
by the polymerase chain reaction (PCR) using a degenerate
primer designed based on the protein sequence obtained for
the xMGP N-terminal region (59-ta(tc)ga(tc)tcita(ct)ga-
(ag)agcca(tc)ga-39) and a primer corresponding to the
adapter sequence (59-acgcgtcgacctcgagatcgatg-39). The re-
sulting PCR products were visualized on a 1% agarose gel
and the fragment corresponding to the putative xMGP
cDNA was cut from the gel, eluted, and cloned into pCR II
(Invitrogen, La Jolla, CA, USA). Final identification was
achieved by sequence analysis of several specific clones by
the dideoxy chain termination method of Sanger.(19) Clon-
ing of the 59 end of the xMGP cDNA was performed by 59-
rapid amplification of cDNA ends (RACE)–PCR on single-
strand cDNA obtained as described previously except that
Smart II oligonucleotide (Clontech, Palo Alto, CA, USA)

was added in the RT mix. PCR was then performed using a
“PCR primer” (SMART PCR cDNA Synthesis Kit; Clon-
tech) specific for the 59-anchor (from SMART kit) and a
MGP-specific reverse primer (59-ctcttgttgcgctcacgg-39).
The resulting amplified DNA fragments were cloned into
the vector pGem-T-easy (Promega, Madison, WI, USA) and
further identified by DNA sequence analysis.

Northern blot analysis

Total RNA from several tissues (bone, heart, liver, kid-
ney, gonad, muscle, skin, brain, and intestine) was prepared
following an established method.(18) The RNA obtained was
then fractionated on a 1.4% formaldehyde-containing aga-
rose gel and transferred onto N1 nylon membranes (0.45
mm; Nytran; Schleicher & Schuell, Dassel, Germany) by a
capillary
method.(20) Prehybridization was carried out at 42°C in
hybridization solution (Ultrahyb; Ambion, Inc., Austin, TX,
USA) for 2–3 h. A specific cDNA probe (spanning from
nucleotides 1–570 of the xMGP cDNA) was labeled with
[a-32P] deoxycytosine triphosphate (dCTP) using the
ReadyprimeII Random Prime Labeling System (Amersham-
Pharmacia, Uppsala, Sweden) and separated from unincor-
porated nucleotides on a MicroSpin S-200HR column
(Amersham-Pharmacia). Hybridization was performed
overnight under the same conditions described for prehy-

FIG. 1. Purification of MGP
from Xenopusbone. MGP was
extracted fromXenopusbone as
described in the Materials and
Methods section and purified by
two sequential Sephacryl S-100
columns. The second Sephacryl
S-100 chromatogram is shown.
The putative MGP peak (frac-
tions 58–59) was further ana-
lyzed by SDS-PAGE. An aliquot
of the protein was dialyzed into
50 mM HCl, dried, and two dif-
ferent amounts of the purified
protein (15mg and 5mg) were
loaded onto an 18% SDS/PAGE
gel. The gel was stained in 0.1%
Coomassie blue and destained as
described.(15) BioRad low molec-
ular weight protein standards are
in the lane furthest to the right of
the gel.
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bridization after adding the probe. Blots were washed twice
in 23 SSC and 0.1% SDS at 42°C for 5 minutes each and
twice in 0.13 SSC and 0.1% SDS at 42°C for 15 minutes
each. Autoradiography was performed at270°C with
Kodak XAR-5 film (Amersham-Pharmacia) and Cronex
Lightning Plus screens (DuPont, Wilmington, DE, USA).

RT-PCR amplification and Southern hybridization of
xMGP message in several developmental stages and
tissues ofX. laevis

Xenopusspecimens were grown at 17°C in our facilities
and collected at different times after induced fertilization.
One microgram of total RNA extracted from adult tissues
(bone, heart, liver, kidney, and muscle) from wholeXeno-
pus specimens at various developmental stages (stages
44–58 according to Nieuwkoop and Faber(21)) and from
posterior limbs of the froglet stage (stage 65) were RT using
an oligo-d(T) adapter (59-acgcgtcgacctcgagatcgatg(t)18-39)
and then one-twentieth of each reaction was amplified by
PCR, using two specific oligonucleotide primers designed
on the xMGP cDNA sequence previously obtained (forward
primer, from nucleotide 248–275; reverse primer, from
nucleotide 547–572; Fig. 2 shows localization). PCR reac-

tions were carried for 22 cycles and 30 cycles (one cycle,
30 s at 94°C, 30 s at 60°C, and 30 s at 72°C) followed by
a final 10-minute elongation period at 72°C withTaqDNA
polymerase (Gibco-BRL, Barcelona, Spain). A negative
control was made by amplifying with all the reagents in-
cluding primers but without DNA added to the tube. The
resulting PCR products were separated by 1% agarose gel
electrophoresis, Southern transferred onto a nylon mem-
brane (Hybond; Amersham), and prehybridized at 42°C for
3 h using 53 SSPE, 103 Denhardt’s, 0.5% SDS, and 50
mg/ml heat denatured salmon sperm DNA. Hybridization
was performed for 15 h at 42°C in 50% formamide, 63
SSPE, 0.5% SDS, and 50mg/ml heat denatured salmon
sperm DNA and the xMGP cDNA fragment labeled with
a-32P dCTP, as described earlier. The membrane was
washed for 23 15 minutes at room temperature and 23 30
minutes at 55°C with 0.13 SSC and 1% SDS and then
subjected to autoradiography. As an internal control for the
relative amount of RNA used for each sample, theXenopus
ornithine decarboxylase (ODC) messenger RNA (mRNA)
also was amplified from the same RT reaction. Amplifica-
tion was performed using two specific primers designed
according to the ODC published DNA sequence(22) and was
carried out for 30 cycles (one cycle, 30 s at 94°C, 30 s at
60°C, and 30 s at 72°C) followed by a final 10-minute
elongation period at 72°C and thus resulting in the ampli-
fication of the expected 382-base pair (bp) DNA fragment.

Detection of mineralized structures duringXenopus
development by whole mount staining with Alizarin
red/Alcian blue

Xenopusspecimens collected at the same developmental
stages used for RT-PCR were fixed overnight at 4°C in 1%
freshly made paraformaldehyde and then washed 33 10
minutes in Tris buffered saline with triton (TBST) buffer
(50 mM Tris, pH 7.4, 150 mM NaCl, and 0.1% Triton
X-100) and stored in methanol at 4°C. Whole specimens
were hydrated in a decreasing alcohol series and stained for
cartilage with Alcian blue 8GX (Sigma, Siutra, Portugal) for
various periods of time according to size.(23) Specimens
were removed from the staining solution immediately after
visible stained structures were observed to avoid decalcifi-
cation of small structures by the glacial acetic acid–ethanol
solution. The specimens were then again hydrated in a
six-step decreasing alcohol series and incubated in 1% KOH
at room temperature for various periods of time until
cleared. Staining with Alizarin red S (Sigma) was per-
formed as with Alcian blue, followed by incubation in
various glycerol/1%KOH baths (starting at 1:3 and increas-
ing to 3:1, respectively). Storage in absolute glycerol was
initiated only when the specimens were completely clear,
with all the internal structures clearly visible. Alkaline-
equilibrated phenol (5–10ml, pH 8) was added to glycerol
for prevention of contamination.

Data analysis

The amino acid sequences of the protein were aligned and
used to compute a matrix of percentage of differences using

FIG. 2. cDNA and deduced amino acid sequence of the xMGP
protein. The cDNA was obtained by RT/PCR and 59-RACE–PCR
amplification ofXenopusheart RNA. Numbering on the side is accord-
ing to the first nucleotide identified as number one in the longest
59-RACE extension obtained. The arrows indicate the localization of
the oligonucleotides used to amplify the MGP cDNA by RT/PCR and
59-RACE. The first amino acid of the mature protein is identified as
11. The stop codon is indicated by an asterisk and the polyadenylation
signal is shown in italics and underlined.
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the PHYLIP software package found at http://evolution.
genetics.washington.edu/phylip.html.(24) Maximum parsi-
mony and neighbor joining trees (for MGP and BGP se-
quences) also were constructed with the PHYLIP package.
The robustness of the trees generated was tested using 1000
bootstraps.(25) The parsimony approach, which is based on
character changes, might help to better understand the evo-
lution of this protein among different organisms and espe-
cially the possible loss and gain of some functionally im-
portant sites.

RESULTS

Purification and protein sequence analysis of xMGP

MGP was purified from the insoluble fraction of acid-
demineralizedXenopusbone by gel filtration twice over
Sephacryl S-100 HR columns equilibrated in 6 M guanidine
HCl and 0.1 M Tris, pH 9.0, as described in the Materials
and Methods section. The chromatogram shown in Fig. 1
revealed a small peak eluting at fractions 58–59, corre-
sponding to the elution volume for MGP in this type of
column (approximately 240 ml). Only one protein with an
apparent molecular weight of 16 kDa was identified in this
fraction by SDS/PAGE (Fig. 1, inset) and N-terminal pro-
tein sequence analysis confirmed its identity to be MGP.
The first 26 amino acids of the mature xMGP obtained by
N-terminal sequence analysis were YDXYEXHEXLEVY-
DPFLNSRKANSFM. This sequence, when compared with
the known MGP sequences revealed a higher degree of
identity in this region with the mammalian MGPs than with
the shark MGP protein previously reported.(15)

Identification of phosphoserine residues in xMGP

The initial sequence analysis of the protein resulted in
blanks at positions 3, 6, and 9. Given that all mammalian
MGPs analyzed to date have conserved phosphoserine res-
idues at those sequence positions(11) and phosphoserine
residues will give blanks unless the protein is modified
before sequence analysis,(26) these results suggested that the
xMGP protein was phosphorylated in the same residues as
its mammalian counterparts. To verify this hypothesis, the
xMGP was treated with ethanethiol to convert the putative
phosphoserine residues toS-ethylcysteines(17) and then sub-
jected to N-terminal sequence analysis. The HPLC separa-
tion of the PTH derivative for residues 3, 6, and 9 revealed,
in each case, a single peak that eluted just ahead of diphe-
nylthiourea (DPTU; a byproduct of sequencer chemistry) in
the chromatograph and coeluted with PTH–S-ethylcysteine.
Only trace amounts of PTH serine were present at these
residues. This indicates that these three residues in xMGP
are phosphoserines and that phosphorylation at these posi-
tions is nearly complete.

Molecular cloning of xMGP cDNA

The xMGP cDNA was obtained by RT-PCR from total
RNA extracted from bone using a primer designed accord-
ing to the first eight residues of the mature protein sequence.

DNA sequence analysis confirmed the identity of the cloned
PCR product to be a partial xMGP cDNA, spanning from
the first residue of the mature protein to the site of insertion
of the poly A tail (Fig. 2). The predicted amino acid se-
quence was in full agreement with the N-terminal protein
sequence obtained for the mature MGP purified fromXe-
nopusbone extracts. The 59 end of the xMGP cDNA was
then obtained by 59-RACE–PCR using a reverse primer
defined within the coding sequence, as described in the
Materials and Methods section. A DNA fragment was am-
plified, cloned, and sequenced and found to overlap with the
first xMGP cDNA obtained. The full-length sequence of the
xMGP cDNA comprises a 59-untranslated region (59-UTR)
of 108 bp followed by an open reading frame coding for 104
amino acids from the first ATG to the stop codon and 265
bp of 39-UTR (Fig. 2). By comparison with known MGP
cDNAs and in agreement with the N-terminal sequence of
the mature xMGP protein, the first 19 residues correspond to
the signal peptide followed by an 85-residue mature protein.

Tissue distribution of MGP mRNA

The expression of MGP in adultXenopustissues was
analyzed by Northern hybridization in tissues obtained at
dissection of the animal as described in the Materials and
Methods section. From all the tissues analyzed, only heart
and bone presented a clearly detectable signal for MGP
mRNA, ranging from approximately 700 to 800 nucleotides
(as deduced from the size of the ribosomal RNAs). This
length was compatible with the size of the cloned xMGP
cDNA (688 bp) plus the poly A tail (Figs. 2 and 3). No
clearly detectable levels for MGP mRNA were seen in
extracts of liver, muscle, kidney, or gonad (Fig. 3) or in
extracts of skin, brain, and intestine (results not shown).
However, when analyzed by RT-PCR using xMGP specific
primers, a DNA fragment corresponding to the expected
size for the xMGP cDNA also was amplified from kidney,
with the highest levels seen in heart and bone. Its identity
was confirmed by Southern hybridization with a specific

FIG. 3. Analysis of MGP expression in different adultXenopus
tissues by Northern blot. Tissue distribution of MGP mRNA was
examined by Northern blotting of total RNA extracted from Xenopus
liver (Li), bone (Bo), heart (He), kidney (Ki), muscle (Mu), and gonad
(Go). Samples (10–20mg) were electrophoresed on a 1.4% agarose-
formaldehyde gel, transferred to a nylon membrane, and hybridized to
a xMGP cDNA as described in the Materials and Methods section. (A)
The relative amount of RNA loaded was assessed by the intensity of
ethidium bromide staining of ribosomal RNA bands. (B) Positive
hybridization using a specific xMGP cDNA probe.

1615MATRIX Gla PROTEIN IN Xenopus laevis



xMGP cDNA (Fig. 4) and by DNA sequence analysis after
cloning of the PCR products obtained (results not shown).

Expression of MGP mRNA duringXenopus
development

The presence of xMGP mRNA inXenopusspecimens
collected through development was analyzed by RT-PCR
starting with premetamorphic larval specimens and into
metamorphic and postmetamorphic stages. After RT of the
RNA samples obtained and using 30 cycles of DNA ampli-
fication with MGP-specific primers (see Materials and
Methods section for details), a clearly distinguishable PCR
product was detected by electrophoresis, beginning with
samples collected at stage 46, and shown to hybridize with
a labeled xMGP cDNA. A longer exposure of the blot
revealed a positive signal even at stage 44 (results not
shown), indicating that MGP mRNA was present in all
stages of development tested. When the number of ampli-
fication cycles was decreased to 22, no distinguishable PCR
product was seen in any sample after electrophoresis and
ethidium bromide staining. However, hybridization with a
specific xMGP probe confirmed the presence of xMGP
mRNA in samples from stage 49 onward (Fig. 4A). A
longer exposure of the blot revealed a faint signal even at
the earlier stages analyzed (results not shown). To prevent
the possibility of contamination from genomic DNA, the
RT sample was treated with DNaseI (to destroy any remain-
ing genomic DNA in our sample) before PCR amplification.
To further exclude the possibility that our positive signal
may result from genomic DNA amplification, the primers
used were located in both sides of several introns of the
xMGP gene (our unpublished data). The use of genomic
DNA as template would have resulted in the amplification
of a much larger fragment (nearly 4 kilobases [kb]). Our

results clearly indicate that MGP mRNA is present during
Xenopusdevelopment, before metamorphosis takes place.
Alcian blue/Alizarin red treatment ofXenopusspecimens
collected at the same developmental stages used for RT/
PCR confirmed that MGP was detected long before the
appearance of the first clearly mineralized structures (stage
54, results not shown).

Primary structure of MGP and evolutionary
considerations

The amino acid sequence of the mature xMGP is pre-
sented in Fig. 5 along with the amino acid sequences of all
other known MGPs and the amino acid sequences of the
evolutionarily related BGPs from 11 different species. The
sequences are aligned to give maximal homology. The
region of maximal homology between MGP and BGP is
denoted by a box. There are 24 invariant amino acids among
the 8 known MGP sequences (marked in Fig. 5 by a vertical
arrow) and 11 invariant amino acids among all the known
BGP sequences, including those sequences known but not
shown (denoted in Fig. 5 by an arrow). Of these invariant
amino acids, eight are common to both MGP and BGP and
include two Gla residues and the two Cys residues, which
form the disulfide bond.

Analysis by pairwise sequence comparison of mature
MGPs from shark to human shows that xMGP shares a
higher identity score with mammalian MGPs (55% and 57%
identity with human and bovine sequences, respectively)
than with the shark MGP (53% identity; Table 1). Never-
theless, from all MGP sequences available to date, xMGP is
still the closest neighbor of shark MGP because bovine and
chicken MGPs have only 39% and 44%, respectively, iden-
tity with the shark sequence (Table 1). When the regions of
highest sequence homology between MGP and BGP (Fig. 5,

FIG. 4. Analysis of MGP expression in different developmental stages and adult tissues ofXenopusby RT/PCR. One microgram of total RNA
extracted fromXenopusspecimens from developmental stage (stages 44–58), from total posterior limbs of froglet (stage 65), and from adult tissues
(liver [Li], kidney [Ki], muscle [Mu], heart [He], and bone [Bo]) were subjected to RT-PCR (22 cycles of amplification) using specific xMGP
primers. The resulting PCR products were separated by electrophoresis on a 1% agarose gel. Staining with ethidium bromide did not detect the
presence of DNA in any lane. The gel was then transferred to a nylon membrane and probed with a specific MGP cDNA as described in the
Material and Methods section. (A) Resulting autoradiography. The band corresponds to the expected cDNA fragment amplified from the xMGP
mRNA with the forward and reverse primers used. Two independent sets of amplifications from two independent RT reactions were performed
and gave comparable results. (B) RT-PCR with primers specific forXenopusODC gene was performed on the same samples to control for the
relative amount of RT mRNA available for PCR and the amplified PCR products were separated by electrophoresis on a 1% agarose gel and
stained with ethidium bromide. The external morphology ofXenopusspecimens at stages 46, 53, and 65 are shown on top of the figure.
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box) were compared by pairwise identity scores, mamma-
lian MGPs were found to be closer among all BGPs to fish
sequences. In addition, shark MGP was closer to nonfish
than to fish BGPs (Table 2). Sequence comparisons were
completed by drawing phylogenetic trees following neigh-
bor joining (Fig. 6) and maximum parsimony (Fig. 7) ap-
proaches on alignment of BGPs and MGPs. Significance of
the resulting networks was tested by bootstrapping, as ex-
plained in the Materials and Methods section. No clear
phylogeny could be inferred inside mammalian MGPs and
BGPs butXenopusand chicken MGPs were clearly an
intermediate between shark and mammalian MGPs (Fig. 6).
Results obtained by maximal parsimony were very similar
except that chicken andXenopussequences appear closer to
shark MGP than to the mammalian proteins (one most
parsimonious tree, Fig. 7).

DISCUSSION

The purification strategy used to isolate MGP from the
long bones ofXenopustook advantage of the knowledge

that MGPs from other species are insoluble in aqueous,
neutral pH buffers and the assumption that xMGP would
share this characteristic. This assumption proved to be cor-

TABLE 2. PERCENTAGE OFIDENTITY SCORES IN THEREGION

WITH HIGHEST HOMOLOGY BETWEEN MGP AND BGP
AMINO ACID SEQUENCES

BGP sequences

Mammals
Xenopus1

Birds Fishes

MGP
sequences

Mammals 29–30 29 32–35

Xenopus1
Chicken

35–44 41–47 38

Shark 38–49 39–41 35

The amino acids within the boxed region in Fig. 5 were analyzed
by pairwise sequence comparison. Sequences were compared as
defined in the Materials and Methods section. Results are shown as
percentage of identity between the sequences analyzed.

FIG. 5. Protein sequence comparison between mature sequences from all known MGPs and selected BGPs representing different phylogenetic
groups. The regions of maximal homology between MGP and BGP are boxed. The positions ofg-carboxyglutamate residues are indicated by (E*).
The invariant residues in MGP sequences are denoted by vertical arrows pointing down; the invariant residues in BGP sequences are denoted by
vertical arrows pointing up. Dashes indicated gaps in the sequence, introduced to increase homology. Residues are numbered according to the
xMGP and BGP proteins. MGP sequences:Xenopus, this study; human(38); mouse(39); rat(40); rabbit(41); cow(42); chicken(36); and shark(15) (note,
the shark MGP sequence extends beyond what is shown, but this region is omitted because there is no counterpart in any other species). BGP
sequences:Xenopus(16); human and mouse(43); rat(44); rabbit(45); cow(46); chicken(47); emu(48); sparus(16); swordfish(49); and bluegill.(50)

TABLE 1. PERCENTAGE OFIDENTITY SCORESAMONG MGPS FROM DIFFERENT SPECIESDEDUCED FROM

PAIRWISE SEQUENCE ANALYSIS

MGP Bovine Chick Xenopus Shark Genbank accession number

Human 85 60 55 41 J05572
Bovine — 59 57 39 GEBOM
Chicken — — 56 44 Y13903
Xenopus — — — 53 AF055588.1
Shark — — — — AAB31208

Full sequences were analyzed by pairwise sequence comparison as defined in the Materials and Methods section. Results are shown
as percentage of identity between the sequences analyzed. Genbank accession numbers for each sequence are shown in the right column.
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rect. The amount of purified MGP, recovered from the peak
fractions shown in the Sephacryl S-100 chromatogram (Fig.
1), was approximately 30mg/g of Xenopusbone. This
amount is similar to that previously obtained for bovine
bone (60mg of MGP per gram of bone(15)) and suggests that
the deposition of MGP inXenopusbone is comparable with
that of mammalian bone.

The N-terminal sequence obtained from the purified ma-
ture protein confirmed the presence of high homology be-
tween all MGPs in this region and permitted an immediate
identification of the purified protein as xMGP. This prompt
identification allowed us to proceed rapidly to amplify its
cDNA by a combination of RT/PCR and 59-RACE–PCR
and then deduce the complete sequence of the protein.

The full-length xMGP cDNA encodes a polypeptide of
104 amino acids with a signal peptide of 19 residues and a
mature protein of 85 residues. The N-terminal first 10 res-
idues contains a repeated motif Ser-Xaa-Glu (SXE) that has
been seen in all the MGPs sequenced to date and comprises
a serine phosphorylation domain of the protein. The level of
phosphorylation determined at serine residues 3, 6, and 9 of
xMGP was found to be nearly 100%, which is comparable
with shark MGP and, in both cases, significantly higher than
in all the mammalian proteins.(11) The justification for this
higher level of phosphorylation in MGPs from two lower
vertebrates as compared with mammalian MGPs is unclear
at the moment but it is likely to be linked to the function
and/or regulation of the protein in these organisms. In
addition, all MGPs known to date, including theXenopus
sequence reported in this article, share a dibasic site at their
C terminus (residues 80 and 81 in theXenopusand human
proteins; Fig. 5) that has been shown to be a site of proteo-
lytic processing in bovine MGP.(10) The fact that this site is
so highly conserved suggests that it is required for the
correct regulation of MGP function.

In Xenopus, the highest levels of MGP mRNA were
found in bones (no efforts were made to remove cartilage
from these samples) and heart, in agreement with the tissue
distribution of MGP mRNA in mammals. These two tissues
have proven to be significantly affected when MGP is either
removed or not functional as shown by MGP knockout
experiments(13) and in vivo warfarin treatments.(12,27)MGP
also was detected in kidney but at levels detectable only by
RT-PCR (Fig. 4). This result is in agreement with works
performed in mammals that have shown that MGP is
present in several different tissues analyzed to date, albeit
only in specific cell types.(1–3,28)

The expression of MGP was analyzed inXenopusspec-
imens ranging from feeding premetamorphic larval stage 44
(corresponding to beginning of chondrocranium develop-
ment) through metamorphic larvae and into postmetamor-
phic froglet (stage 65). MGP mRNA was detectable within
the first days of development inXenopus, long before cal-
cification of the first structures was detected by Alizarin
red/Alcian blue histological techniques (stage 54). This
suggests that MGP may be required to delay and/or prevent
mineralization of soft tissue and cartilage during early de-
velopment. These results are in agreement with previous
data obtained in mammals reporting the expression of MGP
early in rat and mouse development.(4,13) Recently, MGP

FIG. 6. Comparison of MGP and BGP protein sequences using
neighbor joining analysis. Comparison was performed using the se-
quences shown in Fig. 5. Branch lengths represent evolutionary dis-
tances among branching points and are shown in bold when statistically
significant. Numbers indicating bootstrap values (1000 resampling) are
shown at node except when considered not significant (#600).

FIG. 7. Analysis of MGP by maximum parsimony analysis. Align-
ment of MGPs represented in Fig. 5 were analyzed by maximum
parsimony. Only one most parsimonious tree was manually obtained.
Bar perpendicular to branches represents an amino acid substitution at
indicated site according to numbering of Fig. 5 alignment. Note that
only sites where each character is shared between at least two of the
MGP sequences were considered. Substitutions represented only one
time in the tree were indicated by thick bars.
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has been found not only to be a developmentally regulated
inhibitor of cartilage mineralization, controlling mineral
quantity rather than mineral type, but also to play a role in
the regulation of ossification and chondrocyte maturation
during early limb development in birds.(29) Our results in-
dicate that inXenopus, MGP expression can be detected
before mineralization of cartilage structures takes place,
which in our specimens was first detected by Alizarin red/
Alcian blue staining at stage 54, in agreement with work
previously reported.(30) Because early developmental stages
in Xenopusare easily accessible due to external fertilization
and development and because much is already known con-
cerning the events that take place throughout development
in this species,Xenopusrepresents a valuable biological
model to investigate the early regulation of gene expression
during vertebrate development. Therefore, the availability
of MGP cDNA should be useful to further understand the
regulation of MGP in vertebrates. Currently, we are deter-
mining the gene structure of xMGP so that more in-depth
regulatory studies can be performed.

Generally, it is agreed that amphibians were the first
vertebrates to move successfully onto land. The transition
from fish to crawling four-legged tetrapod occurred about
360 million years ago,(31) by the end of the Devonian
period, and implicated the appearance of many adaptations
to the new environment such as improved air breathing,
increased head mobility, and adaptation to a dry environ-
ment. Despite the fact that both bony fish and early amphib-
ians possessed a calcified skeleton, many changes were
needed to permit life onto land including development of
bone as an active tissue responding to mechanical stresses in
the absence of the supporting medium of water. In addition,
it required adaptations in handling of salt and water balance
and changes in calcium metabolism, for which bone type is
critical. In tetrapods, calcium regulation is largely depen-
dent on the interaction between parathyroid gland, which
produces PTH, vitamin D, and cellular bone, which acts as
a calcium reservoir. In contrast with fish, amphibians have
functional parathyroid glands(32) and PTH receptors(33) and
a vitamin D receptor(34) has recently been cloned from
Xenopus. These hormone receptors, involved in calcium
homeostasis, are highly homologous to those found in mam-
mals, indicating that amphibians evolved mechanisms for
controlling calcium homeostasis very similar to those found
in mammals, including establishing bone as a readily avail-
able calcium reservoir. Furthermore, amphibians and higher
vertebrates have cellular bone whereas fish have both cel-
lular and acellular bone, with prevalence of the latter in
higher teleosts.(35) Taken together, these data further stress
the importance of amphibians as a model organism to fur-
ther investigate and understand the function of specific
proteins related to calcium metabolism, in particular, those
such as MGP, which are involved directly in the regulation
of tissue calcification.

Although xMGP was found to have a higher degree of
sequence homology with MGPs from mammalian origin
than with the shark sequence, it also shared some unique
features with shark MGP. Residue 2 of theXenopusand
shark mature proteins is an aspartic acid and not a Gla
residue as is seen in all the other known MGP sequences

(Fig. 5). The xMGP protein has four of its five putative Gla
residues in the same positions as the mammalian proteins
(Gla residues in positions 37, 41, 48, and 52; Fig. 5) but the
fifth Gla residue for xMGP is likely to be residue 55 as is the
case for the shark protein. When all the MGPs are aligned
with a representative set of the known BGP sequences, this
fifth putative Gla residue inXenopusis at a conserved
position with a known site ofg-carboxylation in BGPs (Fig.
5). This feature is suggestive of the common ancestor from
which both MGP and BGP are most likely derived and
indicates that mammalian MGPs have diverged from all
other known MGP sequences at this position.

When comparing theXenopuswith the mammalian MGP
sequences, two substitutions in conserved sites occur in
xMGP (positions 19 and 31), all within the putative
g-carboxylase recognition site. These divergences add to
those seen within the same protein domain for the shark
MGP sequence(15) and the chicken MGP(36) and confirm
that this is one of the most variable regions of MGP. In the
human MGP, this sequence was found to share some ho-
mology with a region of the mammaliang-carboxylase
enzyme,(37) and it was hypothesized that changes within this
region may be linked to the degree to which MGP is
g-carboxylated by this enzyme. This process must involve
recognition mechanisms different from those used for the
other known vitamin K–dependent proteins, which, in con-
trast with MGP, are all synthesized as propeptide-
containing precursors. Because complete sequences for the
carboxylase enzyme from species other then mammals are
not available, at the present time it is not possible to ascer-
tain whether an identical correlation is seen inXenopusor in
other nonmammalian species between this domain of MGP
and the substrate binding domain of theg-carboxylase, as
reported for the mammalian proteins.(37)

In contrast to the changes seen within theg-carboxylation
recognition domain, the invariant residues located within
the phosphorylation domain (the SXE motif within the
N-terminal first 10 amino acids) and the Gla-containing
domain (Gla-Xaa-Xaa-Xaa-Gla-Xaa-Cys sequence, from
amino acid 48–54), previously observed for mammalian
and shark MGPs,(15) also are invariant when MGPs from
Xenopusand chicken are analyzed. This supports the hy-
pothesis that these residues are important for the full activity
of this protein. Some of these residues also are invariable
when MGP and BGP sequences are compared,(16) suggest-
ing that their location within the protein structure may be
important for the correct folding and/or function of MGP
and BGP and further supports the hypothesis stated previ-
ously.

Although the close proximity found between mammalian
MGPs and fish BGPs, as well as between shark MGP and
nonfish BGPs, seems intriguing, a possible explanation for
this may be simply the result of different evolutionary
histories among BGP and MGP and perhaps different evo-
lution rates among fish and nonfish BGPs. To better ascer-
tain this possibility, it would be necessary to have available
additional sequences of MGPs from several bony fishes as
intermediates to shark and amphibian MGPs.
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